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The problem of imaging the interior of the earth arises naturally in geophysics ICl]. The

problem of finding a method for electrical prospection based on just measurements at the boundary

in order to determine the impedance (conductivity) of the earth's interior was proposed in the

case that the impedance depend only on depth by Slichter IS] and it was first considered and

formulated in generality by Calderon I(CJ). Electrical impedance methods have also been used to

measure certain cardiac parameters IH-W] and, in general, arises as a natural way of determining

conductivity contrasts in the human body. We formulate now more precisely the mathematical

problem.

Let n be a bounded smooth domain in R n , n ;:: 2 and let I be a strictly positive function in

LOO(O). (We shall assume throughout IE COO(O).) We consider the differential operator defined

by

We solve the Dirichlet problem, given rpE Hl/2(OO), find u solving

(1)
L"ju::::: 0 in 0

u ::::: ip.

We associate to u as in (1) its Dirichlet integral

(2)

'1 is called here the conductivitll of 0 measures the resistivity of 0) and Q"j(rp) measures the

power needed to maintain a potential rp on the boundary. The problem, proposed by Calderon, is
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whether the measurement of Q7(1O) for all 10 E Hl/2(00) determines I in 0, i.e., is the map

(3) QQ" ti ?'Y --+ 7 mjec rve:

(4)

(5)

(6)

By polarizing the quadratic form (2), knowing Q7(IO)VIO E H 1/2(aO), determines

Q7(IO,tP) kl"VU'''VV

with u, v solutions of L7 w =0 in 0 with u 1
8 0
= 10, v 100 = 1/;.

Using Green's formula in (4) we have

l i u av
00 av

where v denotes outer unit normal at 00. Therefore Q7 determines a unique self adjoint map

A7 : H 1(aO) --+ L2(00)

U 10 0 --+ (I::) 100 -

('Yg:) measures the electrical flux density entering or leaving the boundary. A7 is the Neu-

mann map called also here the voltage to current map. Calderon's question can then be rephrased:

is the map

(1) I .s, A7 injective?

lFrom the practical point of view A7 involves only measurements at the boundary. For every

potential on the boundary we measure the induced current.

Calderon [el proved that the linearized map dQ is injective at the constants.

Theorem 1. dQ 1
7
= 1 is injective.

Proof. Let {j E Cg"(O), and

(8) I(t, z] =1+ t6(x).

Let Q7(t,-) be the curve of quadratic forms associated to i(t,-) as in (2), parametrized by t, We

have, as in (4),

(9) Q7(t,-) (10, 1/;) k I"VU' "VV

where
L7u =0 in n L7 v =0 in n

uloo 10 v 10 0 = 1/;.
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We differentiate (9) with respect to t (we denote ft by . ).

(10)

We integrate the second term in (10) by parts and we obtain

(11)

If we choose 'P and t/J independent of t, we have

(12)

Making use of the identity

Q"1('P, t/J) =LfJvu' \lv.

and integrating by parts in (12), we get

(13)

In the case t =0, (13) becomes

(14)

where

(15)
0 in n =0 in n

V 1.')0 = t/J.

Following Calderon ICJ we choose complex plane wave solutions to (15)

(16)

with ej E (J.) n, j =1,2, satisfying

('P = 1(0)

(t/J = 180)

ej .ej = 0 for j = 1,2, or if

(17)
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Calderon chose

with rj, k E R" satisfying (17). We get

(18)
Q. (!l·e, I

1 e 00' eX e 2 100 ) ==L!!18e- i !l k

== M(k)

where denotes the Fourier transform and we have extended 8 to be zero outside n. This shows

that if <h == 0 then M(k) == 0 Vk and therefore !!18 == 0 in n by the Fourier inversion formula and

then 8 == 0 in n since 81
0 0

== O. 0

Calderon's proof gives actually a left inverse. From (18) we have

where V denotes the inverse Fourier transform and (!!1D )-1 is the solution operator to the Dirichlet

problem. However the linearized map dQ is not onto and therefore the implicit function theorem

cannot be applied to construct a local left inverse for Q. This difficulty was overcome in IS-U, IJ

to obtain a local uniqueness result in dimension 2 (Theorem 3). Furthermore in IS-U, II] it was

obtained a global uniqueness result (Theorem 4) for n 3. We shall describe briefly the main

ideas in the proof below.

We use the following result at the boundary proved by Kohn and Vogelius (lK-V, ID, namely

that knowledge of Q"( (or A"() determines the Taylor series of I at the boundary of n.

Theorem 2. Let Ii (i == 0,1) be OOO(TI) with a positive lower bound. Let Xo E an and let U be

a neighborhood of Xo relative to TI. Suppose that

As a corollary of the theorem we see that a real analytic I is a priori determined by A,,(, Kohn

and Vogelius (lK-V ,II]) have extended this result to cover piecewise analytic l'

Sketch of proof of Theorem 2.

A different sketch of the proof than that of Kohn and Vogelius who used elliptic regularity

follows. It is well known that A"(, the voltage to current map, is a classical pseudodifferential
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operator of order 1 on an. Its principal symbol uA [z, ) = I(x)lel, and therefore knowing A"

we can determine I at the boundary and all of its tangential derivatives. Now, the full symbol of

A" can be written asymptotically as an infinite sum of functions >"k homogeneous of degree 1 - k,

>"k(Z, e) involves the normal derivative of I of order k at x with a non-zero coefficient plus terms

involving normal derivatives of order strictly less than k at x and tangential derivatives of order

at most k, Then an inductive argument proves that we can determine all the derivatives of '1 at

the boundary from the full symbol of A".

Theorem s. [SoU, II]' Let n 3, '10,11 E COO(IT) with a positive lower bound so that

Then

10 =II in IT.

o

Sketch of proof. Let I be any smooth strictly positive function in n. One of the main ideas is

to construct solutions of L"u = 0 in n of the form

(19)

where e E <V n with e· e= 0 as in Calderon's computation (Theorem 1). Using ideas from

geometrical optics we would like that the solutions (19) behave like the complex plane waves ez·e

for 1 llarge.

We want, then,

(20)
o

as Ie! -+ 00

uniformly in IT.

The "transport equation" for 'I/J is the singular perturbation problem

(21)

where
t:ql/2

q = 1 1/ 2 •

However, if we give boundary conditions for (21) at an, 'I/J will not satisfy, in general, the decay

condition (20). Actually, we would expect that the dominant term in (21) for large lei is e· v'I/J.
In dimension 3 if e='7+ ik with e· e=0, e.Vt/J is the Cauchy Riemann equation in the planes
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perpendicular to 11 and certainly we cannot then impose general boundary conditions on If;. Unable

to characterize the boundary values of If; satisfying (21) and (20) (this remains an interesting open

question for reconstruction) we extended 'Y suitable and we look for solutions of (21) in the whole

space and with growth conditions at infinity in the z-variable. We proved in [S-U, II].

Lemma 1. Let 'Y E COO(Rn
) , n 3 with 'Y strictly positive and 'Y := 1 outside a large ball

containing O. Then there is a unique solution If;E -1 < {j < 0 of

satisfying

n
8> -

2

with C depending on 8,0, s.« and H; is the weighted Sobolev space built over the weighted

space with

Now we proceed with our sketch of proof of Theorem 3. Let

(22) 'Y(t, x) (1 - tho + hi in 0, 0 $ t $ 1

1(t, x) := 10 in a::o

where 10 is a smooth extension of both 'Yo and 'Y1 (this is possible by Theorem 2) with ;Yo := 1

outside a ball that contains O. We consider solutions L 7 u := 0, L 7 v := 0 in Rn with 'Y as in (22)

of the form (using Lemma 1)

(23)
u(x,6, t):=e"e''Y- 1/2 (1+ 1/1(x, 6, t))

v(x, e2, t) =e"e''Y- i /2(1+ 1/1(z, e2;, t))

with ek . ek 0, k = 1,2, and Re (6 + 6) o. We have (this is completely analogous to the

computation made before with 'Y as in (8)).

(24)

The difference is now that u and v depend on t at the boundary. However we have (see [S-U,

II]).
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Lemma 2. U(X,ek'O) = u(x,ek,I)Vx E «:{l, k = 1,2. The proof uses the fact that 'i(',t) is

independent of t in «:{l and the fact that the Neumann map for 'ih 0) is equal to the Neumann

map for 'i(', 1).

Using Lemma 2 and integration by parts we can write the boundary integral in (24) as an

integral over a large ball. The growth condition on I/; at infinity (see IS-U, II] for more details)

gives:

Lemma 3. Let u, v be as in (23). Then

1 (.ov OU)'i u-+ v-
en 01/ 01/

0.

Integrating (24) in t and using the fact that the boundary values of u(x, ek, 0) and

u(x,ek,I), k =1,2 are the same we obtain and "average linearization"

(25)

Proceeding as in step (12) to (13) we get

(26) (ll L.(i)uv = 0.
10 0 'i

Now we make special choices of 6, ell in (23), namely

(27)

ell = + - r71)

where kERn, r E R and 71, E Rn satisfying

(k,71) = = =0,

1711 = 1, kill =¥ + r2, so that ek' k =0, k = 1,2.

The idea is that

(28)

with el' ell as in (27). The right hand side of (28) is the exponential in the Fourier transform.

However, for fixed k, I/;(x, 6, t), I/;(x, ell, t) approach zero, uniformly in 0, as r approaches infinity.

The choice (27) is only possible in dimension three or larger.
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Now (26) becomes

Letting r approach infinity and applying Lemma 1 we obtain

Therefore

and using the fundamental theorem of calculus

or

a linear equation for 10g'1l - log')'o which vanishes on an by the Kohn-Vogelius result. The

maximum principle applies to give

log')'l -log')'o =0 in n

or

'Yl =')'0 in n

proving the theorem. 0

The global uniqueness problem in the two dimensional case remains open at present. The

difficulty arises since in this case the inverse problem is formally determined. For n 2, the kernel

of the Neumann map is a function in an x an depending on 2(n - 1) variables. The function ')'

depends on n variables and 2n - 2 = n for n 2 and 2n 2 > n for n 3. This freedom for n 3

was explained in the choices of 6, e2 as in (27). For n =2, we can construct solutions of the form

(21). Lemma 1 is valid although the proof is different because the term e'V!/J is actually a Cauchy-

Riemann equation (see [S-D, II). The other ingredients, Lemma 2 and the average linearization are

also true. However in this case we also need a lowfrequency estimate which was proven essentially

by Calderon ([CI) in the case 'Y close to a constant. We have (see IS-D, In:
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Theorem 4. Let 10, 11 E COO(IT) with a positive lower bound and

Then 3 £(0) sucb that if

IIli - 1I1cs(o) < £(0), i == 0,1, tben 10 == 11 •

We shall study further the transport equation (21) and derive new results (Theorem5J. From

this point on we assume that n == 2.

Theorem 5. Let n == 2, '10, '11 E Coo (IT) with a positive lower bound and

Tben

for all m integers m 0, where qi

In other words (qo -qd is orthogonal in P(O) to the set of analytic and anti-analytic functions

in d1. (Therefore, - ql is real, orthogonal to the set of harmonic functions in 0). We easily

obtain

Corollary 1. Suppose 10, 11 satisfy the conditions of TbeoremS, then

Proof. Take m == 0 in Theorem 4. Then use

Corollary 2. Let 10, 11 be as in Tbeorem £with 10 C, then 11 == C.

Proof. Using Corollary 1, we have

o

Therefore 11 constant, and since 10 coincides with '10 in the boundary, 11 10 == C. 0
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This means that we can distinguish constants from their Neumann maps.

Before going into the proof of Theorem 5we point out that the transport equation (21) for

n = 2 can be factorized and we want to solve with I/;E -1 < (j < O.

(29)

A1;/3 • '2where q = l' 3 and = Il + ik, Il, k E R .

For the dominant term in (29) is the Cauchy-Riemann operator 8 and of course, we

cannot give general boundary condition in an. However, as was proved by Nirenberg and Walker

IN-Wj, given f E 31 II E solving Lu = f in R'2, where L represents aor 8.

This is one of the reasons why looking for solutions of (29) in the whole space works.

We proved in [SoU, I]:

Lemma 4. Given -1 < 8 < 0, there exists a constant G(8) such that, if q E and Ikl

Gllq(1 + Ixl'2)l/2IiLco then there exists a unique solution to

such that 1/;, "VI/; E Moreover, I/;may be written in the form

I/;(X, k) =a(x, k) + e- ix kc(x,k)

where

and

( )
cj(x,k)

c z, k = L..J (k + ik )1
j=l '2 1

with

(30)

Now we are in a position to prove the theorem.

Proof of Theorem {;.

We can rearrange the series for I/; as in Lemma 4 in the followingway;

(31)
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where

(32)

with

since the right hand side of (32) satisfies the same equation as CI, namely

Now al is determined by solving

(32b)

(33)

Now from «31) and the property (30) of the cj,a/s, we deduce that

aleX) ( 1 )
¢(X, k) "2 + ik

l
+ 0 fk12 for 1"1 large

where the lower order term in (33) is uniformly bounded for compact subsets of R2
_

Let us denote ¢o and ¢l respectively as the ¢'s associated with '10 and '11- We also denote

by at the first term in (33). Using now Lemma 2 (which is also valid for n 2) we get:

and therefore by (33)

(34)

Now

== in (;0.

and qo - ql has compact support. Therefore

(35)

with z == Xl + iX2.
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By (34)

1 00 J- aiHz) = zL z" (qo - qd(w)w"dw 1\aw
,,=0

for Izllarge enough. Therefore we conclude

J(qo - qt}(w)w"dw 1\aw =0 Vn.

Changing eto ein the transport equation (21) changes (29) to

and the equation for the analog of al in Lemma 4 is

Repeating the argument above, one gets

and therefore

for all n, thus proving the theorem. 0
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