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The problem of imaging the interior of the earth arises naturally in geophysics [Cl]. The
problem of finding a method for electrical prospection based on just measurements at the boundary
in order to determine the impedance {conductivity) of the earth’s interior was proposed in the
case that the impedance depend only on depth by Slichter {S] and it was first considered and
formulated in generality by Calderén [(C]). Electrical impedance methods have also been used to
measure certain cardiac parameters [H-W] and, in general, arises as a natural way of determining
conductivity contrasts in the human body. We formulate now more precisely the mathematical
problem.

Let © be a bounded smooth domain in R", n > 2 and let -y be a strictly positive function in
L°°(Q). (We shall assume throughout v € C°((1).) We consider the differential operator defined
by

Ly =div (yvu) = 7yAu+ 97 V.
We solve the Dirichlet problem, given ¢ € H/?(3Q), find u solving
Liu=0 in 0
ey

8!8{1:@.

We associate to u as in (1) its Dirichlet integral

(2) Qy(p) = ]n -

v is called here the conductivity of 1 (3 measures the resistivity of ) and Q4(p) measures the

power needed to maintain a potential p on the boundary. The problem, proposed by Calderdn, is
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whether the measurement of Q,{p) for all p € H/2(301) determines 4 in {1, i.e., is the map
Q T

(3) ¥ - Q. injective?

By polarizing the quadratic form (2}, knowing Q,(p)Ve € H'/?(8Q), determines

(4) Qy(p,¥) = fn’rVu e

with u, v solutions of L,w = 0in O with u |, =, v |, = ¥.
Using Green’s formula in (4) we have

(5) Q4(p,¥) =/6 yudl

o Ov
where v denotes outer unit normal at #1). Therefore @, determines a unique self adjoint map
Ayt HY(0Q) — L%(80Q)
(6) du
Ulog — (75,;) ‘ao :

(785) Lo

mann map called also here the voltage to current map. Calderén’s question can then be rephrased:

measures the electrical flux density entering or leaving the boundary. A, is the Neu-

is the map
(7 = A, injective?

(From the practical point of view A, involves only measurements at the boundary. For every
potential on the boundary we measure the induced current.

Calderén [C] proved that the linearized map dQ is injective at the constants.
Theorem 1. dQ |7=1 is injective.

Proof. Let § € C°(Q}, and
(8) Y(t, z) = 1+ 16(x).

Let Q:,) be the curve of quadratic forms associated to 7(Z,-) as in (2}, parametrized by ¢. We

have, as in {4},

(9 @yt (e, ¥) =/nvvu-vv

where
Lau=0 in Lw=0 in 0

¥
"'on:“’ ”Ian':'p‘
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We differentiate (9) with respect to { {we denote 2 by - ).

(10) Q'&(so,w)=fa*‘rvu-vv+]07(viz'vv+vé-vu)-

We integrate the second term in (10) by parts and we obtain

. . Oy . dp
(11) @yl ¥) mfﬁvw V”/m"’(“’au +952).
If we choose ¢ and ¢ independent of ¢, we have
{12} Q4lp, ) = [ syu- .
a
Making use of the identity
Ly(uv) = ul,v+ vLyu+ 27qu- v
and integrating by parts in {12}, we get
(13) Qyle.¥) = / Lv(é)uv-
o] T
In the case { = 0, {13) becomes
(14) Ql(p,w) = / Abuy
ol
where
Au=0 in 0 Av=0 in Q
{(15) s
“Ianzﬂo vIaQ:§Z)~

Following Calderén [C] we choose complex plane wave solutions to {15)

u = 6 (¢=81'Ex I )
(16) o

Y= e"eﬂ (¢ = ez»e, tan)
with £; € €", j = 1,2, satisfying

£:6,=0 for j=12, orif

(17) fj =9;+ ikj

lnj] =1k, ms-k;=0, j=12
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Calder6n chose

with 5,k € R" satisfying {17}]. We get

Q.l("fm'el |an’ et 2 ]69) :/ Attt
a
= Ab(k)

(18)

where ~ denotes the Fourier transform and we have extended & to be zero outside 0. This shows
that if Q; = 0 then Ad(k) = 0 Vk and therefore A§ = 0 in 2 by the Fourier inversion formula and
then § = 0 in § since § Iaa= 0. O

Calderdn’s proof gives actually a left inverse. From (18) we have

8 = (Ap)HQ@u(em® Lo €% ool

where V denotes the inverse Fourier transform and (Ap)~?! is the solution operator to the Dirichlet
problem. However the linearized map dQ is not onto and therefore the implicit function theorem
cannot be applied to construct a local left inverse for . This difficulty was overcome in [S-U, ]
to obtain a local uniqueness result in dimension 2 (Theorem 3). Furthermore in [S-U, II} it was
obtained a global uniqueness result (Theorem 4) for n > 3. We shall describe briefly the main
ideas in the proof below.

We use the following result at the boundary proved by Kohn and Vogelius {[K-V, 1]}, namely
that knowledge of @, (or A,) determines the Taylor series of 7 at the boundary of £.

Theorem 2. Let v; (i = 0,1) be C®°(Q) with a positive lower bound. Let z, € 99 and let U be
& neighborhood of 2, relative to {l. Suppose that

Qo (p) = Q4. () Ve € HY?(8Q) with supp p C B dQ,

then 8°v(zo} = 8%v1(20) Va.

As a corollary of the theorem we see that a real analytic + is a priori determined by A,. Kohn

and Vogelius {[K-V II]} have extended this result to cover piecewise analytic 7.

Sketch of proof of Theorem 2.
A different sketch of the proof than that of Kohn and Vogelius who used elliptic regularity

follows. It is well known that A,, the voltage to current map, is a classical pseudodifferential
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operator of order 1 on 9. Its principal symbol aAq(x, ¢} = v(x)]€|, and therefore knowing A,
we can determine v at the boundary and all of its tangential derivatives. Now, the full symbol of
A, can be written asymptotically as an infinite sum of functions A; homogeneous of degree 1 — k.
Ak{z, ) involves the normal derivative of 7 of order k at z with a non-zero coefficient plus terms
involving normal derivatives of order strictly less than k at = and tangential derivatives of order
at most k. Then an inductive argument proves that we can determine all the derivatives of v at

the boundary from the full symbol of A,,. ]

Theorem 8. [S-U, I]. Let n > 3, 75,71 € C®(1l) with a positive lower bound so that

Q’To = va .

Then

Yo=71 in L

Sketch of proof. Let v be any smooth strictly positive function in . One of the main ideas is

to construct solutions of Lyu = 0 in  of the form
{19) u=e" (1 + ¢z, §))

where £ € €" with £-£ = 0 as in Calderén’s computation {Theorem 1). Using ideas from
geometrical optics we would like that the solutions (19} behave like the complex plane waves e¥¢
for || large,

We want, then,

(20) o= 0
as [§] — o0

uniformly in 0.

The “transport equation” for ¢ is the singular perturbation problem

(21) AY+E- vy —gPp=¢inQ
where
A71/2
qg= —7'175—

However, if we give boundary conditions for (21) at 8%, ¢ will not satisfy, in general, the decay
condition {20}. Actually, we would expect that the dominant term in (21) for large |¢] is £ - ¥¢.
In dimension 3 if £ = 5 + ik with £- £ =0, £ - ¢ is the Cauchy Riemann equation in the planes
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perpendicular to 7 and certainly we cannot then impose general boundary conditions on ¢. Unable
to characterize the boundary values of ¢ satisfying (21) and (20) (this remains an interesting open
question for reconstruction) we extended 7 suitable and we look for solutions of (21) in the whole

space and with growth conditions at infinity in the z-variable. We proved in [S-U, II].

Lemma 1. Let v € C®(R"), n > 8 with ~ strictly positive and v = 1 outside a large ball

containing Q. Then there is a unique solution y € LE, —1< 8§ <0 of
AY+€- vy —gp=ginR"

satisfying
n
¥ 8> —
Il < 5. 2>
withk C depending on 8,(},5,q9 and H} is the weighted Sobolev space built over the weighted L2

space with
Wl = [ P iepas.

Now we proceed with our sketch of proof of Theorem 3. Let
(22) Hhz)={1-y+iyinQ, 0<t<1

2y =% @ €O

where 7; is a smooth extension of both 4, and ~,; (this is possible by Theorem 2} with 7, = 1
outside a ball that contains . We consider solutions L u = 0, L v = 0 in R" with v as in {22)

of the form {using Lemma 1)

u(z, &1, t) = 172 (1 + (2, &1, 1))

(23)
”{3") 52» t) = 81'53’7~1/2 (1 + Xb(zs 62; s t))

with € - & = 0, k = 1,2, and Re (£ + £2) = 0. We have (this is completely analogous to the

computation made before with v as in (8}).

. ) e
(24) Qrlu !an’ ”‘an) =L7V“'Vﬂ+‘/;ﬂq(u$+v5;

The difference is now that u and v depend on ¢ at the boundary. However we have {see [S-U,

).
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Lemma 2. u(z,£&,0) = u(z,&,1)Vz € €Q, k = 1,2. The proof uses the fact that 7(-, ¢} is
independent of t in €0 and the fact that the Neumann map for +(-,0} is equal to the Neumann
map for y(-,1).

Using Lemma 2 and integration by parts we can write the boundary integral in {24) as an
integral over a large ball. The growth condition on ¢ at infinity (see [S-U, II] for more details)

gives:

Lemma 8. Let u,v be as in (23). Then

/mv(ﬁ}%”%) =0.

Integrating (24) in ¢ and using the fact that the boundary values of u(w, &,0) and

”

u(:c, &, 1), k = 1,2 are the same we obtain and “average linearization

{25) '/;I/Qﬁvwvvzo.

Proceeding as in step (12) to {13) we get

(26) [)lLL7(3)uv=O.

Now we make special choices of £;, & in {23), namely

gk
& =§+z(§+rr))
(2) .
f2= —§+'(§—ﬂ7)
where k € R", r € R and 5, ¢ € R" satisfying

(k) = (k,¢) = {n,¢) =0,

Il =1, ¢ = BE 472, so that & - & =0, k = 1,2.
The idea is that

(28) e (E1t8) = sk

with &;, &, as in {27). The right hand side of {28} is the exponential in the Fourier transform.
However, for fixed k, ¥(z, &, t), ¥/(z, &2,¢) approach zero, uniformly in {7, as r approaches infinity.

The choice {27) is only possible in dimension three or larger.
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Now (26) becomes

0= ./ﬂldt/ . %L” (%)et‘zk(l + w(x, £, g))(l + vr)(x’ £, t)}

Letting r approach infinity and applying Lemma 1 we obtain

ez'[m[/old:%.%(%)]e‘” Vk € R™.

Therefore

1
0= / dijAlogy + 2w logn[’]*
0

and using the fundamental theorem of calculus

0= A(logyy —log o) + [|w(log71)[® — [w(log7o)|?]

or

0= A(logys - logo) + 2v(logv; +log o) - V{log 1 — log %),

a linear equation for log~; — logyo which vanishes on 41} by the Kohn-Vogelius result. The

maximum principle applies to give
logvy ~logv =0 in 0

or

TM=7 in
proving the theorem. 0

The global uniqueness problem in the two dimensional case remains open at present. The
difficulty arises since in this case the inverse problem is formally determined. For n > 2, the kernel
of the Neumann map is a function in dQ x #Q depending on 2(n — 1) variables. The function «
depends on n variables and 2n~2 =nforn =2 and 2n—-2 > n for n > 8. This freedom for n > 3
was explained in the choices of £y, £ as in {27). For n = 2, we can construct solutions of the form
(21). Lemma 1 is valid although the proof is different because the term &-<7¢ is actually a Cauchy-
Riemann equation (see [S-U, I]). The other ingredients, Lemma 2 and the average linearization are
also true. However in this case we also need a low frequency estimate which was proven essentially

by Calderén ([C]) in the case v close to a constant. We have (see [S-U, I}):
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Theorem 4. Let 7o, 7, € C*(0) with a positive lower bound and

Q’ro = Q'h :
Then 3 (1) such that if

ll"i - 1”08(6) < E(Q), § = Ovla then To =",

We shall study further the transport equation {21) and derive new results (Theorem £). From

this point on we assume that n = 2.

Theorem 5. Let n =2, 7,7 € C""(ﬁ) with a positive lower bound and

Q"Io = Q”n-

Then
f {20 —a){(w)w™dw A dT = / {go — @) (W) dw AdT =0
Q a

1/2

i— and w = z; + iz, € R2,

for all m integers m > 0, where ¢; = A';f

In other words {go —¢; ) is orthogonal in L2((1) to the set of analytic and anti-analytic functions

in €. {Therefore, sinceq, — ¢, is real, orthogonal to the set of harmonic functions in 7). We easily
3

obtain

Corollary 1. Suppose vo,v; satisfy the conditions of Theorem 5, then
/ [wlogwf® = / | log7if®.
0 o
Proof. Take m = 0 in Theorem 4. Then use
go — 1 = Alog(vo — 1) + |V log o[> = [vlogyi|? and integrate. O

Corollary 2. Let 75,7 be as in Theorem §with vp = C, then 4, = C.

Proof. Using Corollary 1, we have

/ [viogmi]* = 0.
a

Therefore v, = constant, and since ~ coincides with 7y in the boundary, v, = v = C. O
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This means that we can distinguish constants from their Neumann maps.
Before going into the proof of Theorem 5 we point out that the transport equation (21) for

n = 2 can be factorized and we want to solve with ¢ € L%, -1 < § < 0.
(29) 3(0 + (ks +ik1))Y — ¢ = ¢ in R

where ¢ = %—"{71;—3- and £ = n + ik, n,k € R%.

For |k| large, the dominant term in (29) is the Cauchy-Riemann operator 9 and of course, we
cannot give general boundary condition in 80). However, as was proved by Nirenberg and Walker
[N-W], given f € L2,,, 3! u € L? solving Lu = f in R?, where L represents 8 or 4.

This is one of the reasons why looking for solutions of (29} in the whole space works.

We proved in [S-U, 1]:

Lemma 4. Given —1 < § < 0, there exists a constant C (5} such that, if ¢ € L},, and [k| >

Cllg(1 + |z]?)"/%||L then there exists a unique solution to
Ay + (k; 4 ‘k2)5¢ —q=q
such that ¢, 7y € L2. Moreover, ) may be written in the form

V(z,k) = a(z, k) + e Fc(z, k)

where

_aifg) N ag(zk)

a#,k) = ky + ik; +Z=: (ko +1k;)7
and o
e;{z, k)
ef{z, k) = St Lt il

( ) ; (k2 + !}Cx )]
with
(30) Nesllag: llaslla; < ella(@+|=)72117= llglla, ,

Now we are in a position to prove the theorem.

Proof of Theorem §.

We can rearrange the series for ¢ as in Lemma 4 in the following way:

Gy (I) . -—Bal ad @y
31 = -
( ) ¢’ kz + ik + (fcz -+ fk;)z + Z (kz -+ ikl)}
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) h X iy
+e—-(.’t‘k ; + J. _
((kg + lk1)2 :;22 (kz + Skl)]
where
2% 3q, h

32 =
(32) O T v ik, | kg + ik
with

8h = e'**%9%,

since the right hand side of (32) satisfies the same equation as ¢;, namely
de; = e *day.

Now a; is determined by solving

(32h) day; =g

Now from ({31) and the property (30) of the ¢;,a,'s, we deduce that

d 1
(33) ¥iz, k) = k:izil + O(W) for |k| large

where the lower order term in (33) is uniformly bounded for compact subsets of R
Let us denote ° and ¢ respectively as the 1’s associated with 7, and ;. We also denote

by a$, a} the first term in (33). Using now Lemma 2 (which is also valid for n = 2) we get:
W=y in CO

and therefore by (33)

(34) ad=ql in CO

Now
5(“2 —6})=g—q

and go — ¢1 has compact support. Therefore

(35) (a2 - al)(z) = f g0 —a1){w) ;_‘“u))("’)dw A di

with 2 = 23 + iz,
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By (34)

o0

(a3 ~ai)(2) = ;Z z"/(qo - q1)(w)w"dw A dw

n=0

for |z] large enough. Therefore we conclude

/(qo — g1 }{w)w"dw A dw = 0 Vn.

Changing ¢ to £ in the transport equation (21) changes (29) to

(0 + (ks —ik:))Y —qv =¢

and the equation for the analog of a; in Lemma 4 is

361 =4q.

Repeating the argument above, one gets

1
Z=w

{g0 - @:)(w)dw A dT

(o} - a})(e) = |

and therefore

./W"(qo ~q)(wdwAdw =0

for all n, thus proving the theorem.

References.

IC] Calderdn, A. P., “On an inverse boundary value problem,” Seminar on Numerical Anal-
ysis and its Applications to Continuum Physics, Soc. Brasileira de Matemadtica, Rio de
Janeiro, 1980, 65-73.

IC] Claerbout, Jon 1., Imaging the Earth’s Interior. Blackwell Scientific Publications, 1985,

[H-W]  Henderson, R. and Webster, J., “An impedance camera for spatially specific measure-
ments of the thorax,” JEEE Trans. Bio. Engl., Dec. 1977.

[K-V,]] Kohn, R., and Vogelius, M., “Determining conductivity by boundary measurements,”
Comm. Pure Appl. Math. 87(1984), 280298,

[K-v 1] , Comm. Pure Appl. Math. 38(1985}, 643—667.

[N-W]  Nirenberg, L., and Walker, H., “Null spaces of elliptic partial differential operators in
R"” J. Math. Anal. Appl 42(1973), 271-301.

is] Slichter, L. B., Physics 4, Sept. 1933.

[$-UJ]  Sylvester, J., and Ublmann, G., “A uniqueness theorem for an inverse boundary value
problem in electrical prospection,” Comm. Pure Appl. Math. 89(1986), 91-112.

{S-U,11] , “A global uniqueness theorem for an inverse boundary value problem,”

to appear in Apnals of Math.



